Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra. | \(g_{15}+(-\sqrt{-1}-1)g_{14}+(\sqrt{-1}-1)g_{13}-2\sqrt{-1}g_{11}-2\sqrt{-1}g_{7}\) | \(g_{34}\) | \(g_{19}\) |
weight | \(\omega_{1}+\omega_{2}\) | \(4\omega_{1}+\omega_{2}\) | \(\omega_{1}+4\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1) | \(\displaystyle V_{4\omega_{1}+\omega_{2}} \) → (4, 1) | \(\displaystyle V_{\omega_{1}+4\omega_{2}} \) → (1, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(4\omega_{1}+\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(5\omega_{1}-\omega_{2}\) \(3\omega_{2}\) \(3\omega_{1}\) \(3\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+5\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(-5\omega_{1}+4\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-3\omega_{1}\) \(-3\omega_{2}\) \(-3\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) \(\omega_{1}-5\omega_{2}\) \(-\omega_{1}-4\omega_{2}\) | \(\omega_{1}+4\omega_{2}\) \(-\omega_{1}+5\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(3\omega_{2}\) \(3\omega_{2}\) \(3\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(5\omega_{1}-4\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(4\omega_{1}-5\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}\) \(-3\omega_{2}\) \(-3\omega_{1}\) \(-5\omega_{1}+\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) \(-4\omega_{1}-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(4\omega_{1}+\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(5\omega_{1}-\omega_{2}\) \(3\omega_{2}\) \(3\omega_{1}\) \(3\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+5\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(-5\omega_{1}+4\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-3\omega_{1}\) \(-3\omega_{2}\) \(-3\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) \(\omega_{1}-5\omega_{2}\) \(-\omega_{1}-4\omega_{2}\) | \(\omega_{1}+4\omega_{2}\) \(-\omega_{1}+5\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(3\omega_{2}\) \(3\omega_{2}\) \(3\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(5\omega_{1}-4\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(4\omega_{1}-5\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}\) \(-3\omega_{2}\) \(-3\omega_{1}\) \(-5\omega_{1}+\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) \(-4\omega_{1}-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}+\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus M_{5\omega_{1}-\omega_{2}}\oplus M_{3\omega_{2}}\oplus 2M_{3\omega_{1}} \oplus M_{-2\omega_{1}+4\omega_{2}}\oplus 2M_{\omega_{1}+\omega_{2}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+5\omega_{2}} \oplus 2M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{2\omega_{1}-\omega_{2}}\oplus 2M_{-3\omega_{1}+3\omega_{2}}\oplus 2M_{0}\oplus M_{3\omega_{1}-3\omega_{2}} \oplus M_{-5\omega_{1}+4\omega_{2}}\oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus 2M_{-\omega_{1}-\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus M_{-3\omega_{1}}\oplus 2M_{-3\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}} \oplus M_{\omega_{1}-5\omega_{2}}\oplus M_{-\omega_{1}-4\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+4\omega_{2}}\oplus M_{-\omega_{1}+5\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus 2M_{3\omega_{2}}\oplus M_{3\omega_{1}} \oplus M_{-2\omega_{1}+4\omega_{2}}\oplus 2M_{\omega_{1}+\omega_{2}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus 2M_{-\omega_{1}+2\omega_{2}} \oplus 2M_{2\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}-4\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}}\oplus 2M_{0}\oplus 2M_{3\omega_{1}-3\omega_{2}} \oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-5\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus 2M_{-\omega_{1}-\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus 2M_{-3\omega_{1}}\oplus M_{-3\omega_{2}}\oplus M_{-5\omega_{1}+\omega_{2}} \oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}-\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}+\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus M_{5\omega_{1}-\omega_{2}}\oplus M_{3\omega_{2}}\oplus 2M_{3\omega_{1}} \oplus M_{-2\omega_{1}+4\omega_{2}}\oplus 2M_{\omega_{1}+\omega_{2}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+5\omega_{2}} \oplus 2M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{2\omega_{1}-\omega_{2}}\oplus 2M_{-3\omega_{1}+3\omega_{2}}\oplus 2M_{0}\oplus M_{3\omega_{1}-3\omega_{2}} \oplus M_{-5\omega_{1}+4\omega_{2}}\oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus 2M_{-\omega_{1}-\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus M_{-3\omega_{1}}\oplus 2M_{-3\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}} \oplus M_{\omega_{1}-5\omega_{2}}\oplus M_{-\omega_{1}-4\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+4\omega_{2}}\oplus M_{-\omega_{1}+5\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus 2M_{3\omega_{2}}\oplus M_{3\omega_{1}} \oplus M_{-2\omega_{1}+4\omega_{2}}\oplus 2M_{\omega_{1}+\omega_{2}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus 2M_{-\omega_{1}+2\omega_{2}} \oplus 2M_{2\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}-4\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}}\oplus 2M_{0}\oplus 2M_{3\omega_{1}-3\omega_{2}} \oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-5\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus 2M_{-\omega_{1}-\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus 2M_{-3\omega_{1}}\oplus M_{-3\omega_{2}}\oplus M_{-5\omega_{1}+\omega_{2}} \oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}-\omega_{2}}\) |
2 & | -1\\ |
-1 & | 2\\ |